Czym jest uczenie maszynowe?

Czym jest uczenie maszynowe?

Uczenie maszynowe, znane również w języku polskim jako „machine-learning”, to coraz popularniejszy temat. Jest to coś, co mnie bardzo interesuje i nie ukrywam, że bardzo mnie interesuje. Blog o statystyce jest świetnym miejscem do dzielenia się informacjami o statystyce, bo to ona jest sercem uczenia maszynowego.

Jeśli czytasz Statystyki od jakiegoś czasu to wiesz, że uwielbiam czytać o aktualnych nowinkach naukowych. Dlatego właśnie napisałem wpis o datasaurusie. Mam nadzieję, że temat uczenia maszynowego również przyniesie nam wiele ciekawostek.

  • Czym jest uczenie maszynowe?

Wróćmy jednak do podstaw. Czym jest uczenie maszynowe? To może Cię zaskoczyć. Nie ma dobrej lub złej definicji. Uczenie maszynowe jest definiowane na wiele różnych sposobów, więc nie ma znaczenia, gdzie spojrzysz. Chodzi jednak o to, że komputery były w stanie wykonywać zadania, dla których nie istniało programowanie. Komputery były w stanie rozwiązywać problemy na podstawie danych, które otrzymywały. Komputer bierze informacje, które my dostarczamy i wyciąga wnioski.

Dlaczego posiadanie odpowiedniego oprogramowania i danych to konieczność w księgowości? Dowiedz się więcej na https://fakturymanager.pl/a/apyr,dlaczego-posiadanie-odpowiedniego-oprogramowania-i-danych-to-koniecznosc-w-ksiegowosci

  • Kilka definicji uczenia maszynowego

Arthur Samuel ukuł termin uczenie maszynowe w 1959 roku, aby opisać zdolność komputerów do uczenia się bez wyraźnego programowania.

Tom Mitchell również zaproponował bardzo dobrze znaną definicję uczenia maszynowego. Tom Mitchell zaproponował inną definicję uczenia maszynowego. Stwierdził on, że maszyna może nauczyć się zadania T używając doświadczenia E i miar jakości P, jeśli jakość zadania jest poprawiona przez zwiększenie ilości doświadczenia E.

Z drugiej strony, uczenie maszynowe można określić jako interdyscyplinarną naukę, która kładzie nacisk na statystykę i informatykę. Celem sztucznej inteligencji jest stworzenie zautomatyzowanego systemu, który może sam się doskonalić poprzez wykorzystanie zgromadzonych doświadczeń, danych i zdobywanie nowej wiedzy.

Te trzy definicje powinny pomóc Ci w zrozumieniu uczenia maszynowego.

  • Uczenie się i wzmacnianie, zarówno nadzorowane, jak i nienadzorowane

Istnieje wiele sposobów na podział uczenia maszynowego. Dzielimy uczenie maszynowe na nadzorowane lub nienadzorowane w oparciu o rodzaje przykładów i informacji, które zawierają. Uczenie przez wzmocnienie jest kolejną metodą, która została wspomniana.

Uczenie nadzorowane występuje wtedy, gdy zestaw danych, który jest dostarczany do maszyny uczącej się, zawiera również oczekiwane odpowiedzi. Na przykład, zdjęcia kwiatów i ich nazwy. Albo zestaw e-maili, które powiedzą Ci, który e-mail jest spamem, a który nie. Ten rodzaj uczenia pozwala nam pokazać zdjęcie kwiatu, którego nie ma w naszym zbiorze danych i nauczyć się jego rodzaju. (Musiały istnieć inne zdjęcia tego kwiatu, więc komputer musiał się go nauczyć na ich podstawie). Nowy email trafi albo do skrzynki odbiorczej albo do folderu spam.

Uczenie nienadzorowane to takie, w którym nie dajemy żadnych odpowiedzi, a jedynie zestaw danych. Możemy mieć zdjęcia kwiatów, ale nie mamy więcej informacji. Należy je podzielić na grupy, a każde nowe zdjęcie umieścić w grupie z podobnymi kwiatami. Co tak naprawdę oznacza słowo „podobne”? Maszyna ucząca może wybrać, co oznacza słowo „podobny”. Zazwyczaj na początku dostajemy informację, na jakie grupy chcemy podzielić nasze dane.

Uczenie wzmacniające występuje wtedy, gdy system działa w nieznanym środowisku. System nie jest w stanie otrzymać zarówno określonych danych wejściowych, jak i wyjściowych. Jedyną informacją, jaką otrzymuje ucząca się maszyna, jest sygnał wzmocnienia. Sygnał ten może być pozytywny (nagroda) lub negatywny (kara). Jest to również znane jako metoda prób i błędów. Jednym z przykładów jest granie w nową grę z zasadami, których nie znamy. Po zakończeniu gry dowiadujemy się, czy wygraliśmy, czy przegraliśmy (nagroda/kara). W następnych grach powinno być lepiej.

Przyznam, że czasami korzystam z tej metody (uczenie przez wzmacnianie), gdy gram w nową grę na telefonie i nie chcę czytać instrukcji. Po kilku próbach zazwyczaj rozumiem grę przynajmniej w pewnym stopniu.

  • Podstawowy podział algorytmów uczenia maszynowego

Algorytmy klasyfikacyjne – Algorytmy te pozwalają na przypisanie danych do odpowiednich kategorii. Najbardziej znanym przykładem jest podział wiadomości e-mail na spam i nie-spam. Poza tym możliwa jest identyfikacja kwiatów na podstawie ich wyglądu oraz odręcznie pisanych numerów. Jeżeli dane są przypisane do dwóch kategorii, to mamy do czynienia z klasyfikacją dwuklasową. Klasyfikacja wieloklasowa jest stosowana w przypadku etykiet z wieloma etykietami.

Algorytmy regresji są takie same jak w tekście o regresji liniowej. Potrzebujemy danych wejściowych (np. Mamy dane wejściowe (np. wielkość czekolady, zawartość kakao, producent itp.). Oczekujemy, że algorytm pomoże nam przewidzieć koszt takiej czekolady (nie oczekujemy wartości dyskretnych, w przeciwieństwie do klasyfikacji).

Algorytmy klasteryzacji – Algorytmy te służą do grupowania danych (klastrów), na podstawie podobieństwa – np. klienci o podobnej historii w bankach.

Istnieje wiele innych algorytmów, które można wykorzystać, ale nie są one tak znane

  • Uczenie maszynowe i gry

Kiedyś dużo grałem w gry go. Jeździłem na turnieje i doskonaliłem swoje umiejętności, a jednocześnie brałem udział w wielu działaniach, które zachęcały ludzi do gry. Często przypominało mi się powiedzenie „jeśli szachy są królem, to go jest ich cesarzem”. Po tym często następowała wzmianka o tym, że Kasparow przegrał w szachy z komputerem. Go było wtedy symbolem gry, która daje tak wiele możliwości, że żaden komputer nie pokona człowieka. Zwycięzca programu przeciwko mistrzowi otrzymywał nagrodę w wysokości miliona dolarów. Spotkało się to z salwami śmiechu.

Obecnie jest to już jednak nieaktualne. Program AlphaGo został stworzony przez zespół DeepMind i pokonał Lee Sedola, jednego z najzdolniejszych graczy go na świecie. AlphaGo nie opierał się na algorytmie napisanym przez człowieka. „Jeśli twój przeciwnik gra w ten sposób, lepiej zagrać w ten sposób”. Było to niemożliwe, ponieważ w go jest zbyt wiele ruchów (kombinacji jest więcej niż atomów we wszechświecie). Program uczył się przez działanie. Przeanalizował miliony gier i grał „z samym sobą”. Wygrał tam, gdzie przez wiele lat było to niemożliwe. Rozgrywkę śledziło wielu ludzi na całym świecie – nie tylko gracze go, ale także osoby zainteresowane rozwojem sztucznej inteligencji. Było to przełomowe wydarzenie w historii uczenia maszynowego.

  • Sztuczna inteligencja: Czy powinniśmy się bać?

Wydaje się, że ułatwia nam życie i pomaga. Staje się coraz bardziej powszechna. Samochody bez kierowców nie istnieją, lekarze mogą pomagać w diagnozowaniu, e-maile mogą być dzielone na spam lub nie-spam, a my otrzymujemy spersonalizowane rekomendacje dotyczące tego, co czytać lub oglądać. Uczenie maszynowe staje się coraz bardziej powszechne w naszym codziennym życiu, a przez większość czasu nawet nie zdajemy sobie sprawy, że z niego korzystamy. Wydaje się, że postęp jest nieunikniony. Będzie tylko coraz lepiej. Muszę przyznać, że trochę mnie to niepokoi. Być może przeczytałem zbyt wiele książek science fiction. Mo „liwe, „e czytam zbyt wiele ksią „ek science fiction.

Previous Która przyczepa budowlana jest odpowiednia dla Twojej firmy?
Next Najlepsze lokalizacje inwestycyjne w Polsce: Metropolia Krakowska

Może to Ci się spodoba

Wiadomości 0 Comments

Przyszłość należy do firm potrafiących przetwarzać i wykorzystywać dane

W perspektywie pięciu lat 71 proc. firm planuje inwestować w analizę danych – wynika z badań MicroStrategy. Eksperci podkreślają, że firmy muszą się przekształcić z organizacji, które tylko posiadają dane, w takie, które potrafią

Wiadomości 0 Comments

10 zasad na efektywną naukę angielskiego w bieznesie i nie tylko

Jeśli masz zamiar lub właśnie uczysz się języka angielskiego, to z pewnością chciałbyś, aby nauka przynosi szybkie rezultaty. Odpowiednie dostosowanie metod nauki do tego, jakie masz, predyspozycje pozwoli na szybkie

Wiadomości 0 Comments

Kolekcjonerskie książki dobrą alternatywą dla tradycyjnych inwestycji

Polacy coraz częściej stawiają na alternatywne środki pomnażania kapitału. Rośnie popularność inwestycji w tradycyjne dzieła sztuki, jak obrazy czy rzeźby, ale wysoki zysk pozwalają też osiągnąć kolekcjonerskie książki. Bibliofilskie egzemplarze to

Wiadomości 0 Comments

3 sposoby na zwiększenie sprzedaży w sklepie internetowym

Nawet jeśli sprzedaż kształtuje się na dość satysfakcjonującym poziomie, to nie znaczy, że nie mogłaby być jeszcze wyższa. A co najważniejsze, naprawdę nie potrzeba wiele, aby przebić pewną barierę, która

Wiadomości 0 Comments

Na koniec roku w budżecie możliwe kilkanaście miliardów złotych nadwyżki

W I połowie roku wpływy budżetowe przekroczyły połowę zakładanych na cały rok, podczas gdy wydatki nie sięgnęły 45 proc. To stawia budżet w dobrej sytuacji nawet pomimo ponoszonych wydatków na program Rodzina

Wiadomości 0 Comments

Co to jest CFD

Kontrakt na różnicę kursową lub potocznie CFD jest umową pomiędzy dwoma stronami, zwykle nazywanymi „Kupującym” i „Sprzedającym”, aby zapłacić sobie nawzajem różnicę pomiędzy ceną otwarcia i zamknięcia pozycji na instrumencie

0 Comments

Brak komentarzy!

You can be first to skomentuj post

Zostaw odpowiedź